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Topological analysis of chaos in the optically pumped laser
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A topological analysis has been carried out on time series generated from a Doppler broadened three-level
model, which has been proposed to describe optically pumped lasers, in particular the far-infrared ammonia
laser. In certain parameter ranges it is known that the experimental findings and the predictions from the
Doppler broadened optically pumped laser model closely agree and show features that follow the dynamics of
the Lorenz model. By means of a suitable symmetry adapted differential phase space embedding, the present
analysis shows that, in fact, the embedded data sets are topologically equivalent to the Lorenz attractor. This
equivalence essentially remains upon variation of a laser control parameter within a certain range.
@S1063-651X~97!07403-5#

PACS number~s!: 05.45.1b, 42.65.Sf, 42.55.Lt
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I. INTRODUCTION

Chaotic dynamics of a large variety of systems has b
studied in recent years, often motivated by the wish to
derstand this ‘‘unpredictable’’ deterministic behavior in pa
ticular systems. Optics with its ready control of the degre
of freedom of a system has proved to be a fertile field for
study of low-dimensional chaotic dynamics@1#. It has proven
to be also a fortunate field after the recognition@2# that a
model describing a single-mode homogeneously broade
resonantly tuned ring laser is isomorphic to the Lore
model@3#, the simplest and most paradigmatic model, wh
exhibits chaos in an autonomous system.

However, the experimental observation in a laser sys
of the dynamics predicted by the Lorenz-Haken mo
turned out to be a long standing and challenging problem.
to now this type of dynamics has been observed only on
optically pumped far-infrared ammonia laser@4,5#. This fact
originated a controversy@6#, since such a laser device is
relatively complex physical system involving factors such
coherent pumping and Doppler broadening, which make
number of degrees of freedom much larger than in the
renz model. In fact, a realistic laser model taking into a
count these two physical factors~Doppler broadened opti
cally pumped laser model, DOPL@6–8#! has shown, in
certain parameter ranges, results in remarkable agree
with the experimental findings and, at the same time, w
Lorenz-model predictions.

Comparisons with the Lorenz model, however, have b
performed so far only by visual and metric analysis: qual
tive comparison of time series and bifurcation diagrams
calculation of spectra of generalized dimensions, entro
and return maps of the laser intensity peak value@6–8#.

Metric analysis~in particular, the determination of geo
metric quantities such as fractal dimensions, entropy,
Lyapunov exponents@9,10#!, however, does not provide
full understanding or description of the system dynami
Such analysis requires long, low noise data sets and ge
ates real numbers, usually without error bars, which are
551063-651X/97/55~3!/2479~9!/$10.00
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ficult to verify independently@11#. Metric analysis provides
little information on the mechanisms or the equations gen
ating chaotic processes. Thus the problem of the compar
between the DOPL model~or the experimental! chaotic dy-
namics and that of the Lorenz model can be considered
not fully satisfactory yet.

In recent years it has been shown that a topological an
sis of chaotic time series can yield more information on
mechanisms generating such behavior in a given syst
thus leading to a very deep characterization of its dynam
@12–21#. In the present paper a topological analysis of t
chaotic time series generated by the DOPL model is p
formed, with a twofold aim:~i! to provide a definitive evalu-
ation of the degree of equivalence between the dynamic
the complex DOPL model and that of the simple Lore
model; ~ii ! to study the influence of laser parameter var
tions on this equivalence. In particular, it is known that
increase or a decrease of the cavity losses from an optim
value leads to some differences between the DOPL cha
pulsing~or the experimentally observed one! and the typical
Lorenz model chaotic pulsing@6,8#. A double-peaked cusp in
the peak-intensity return map appears, and several gen
ized dimensions take slightly larger values. We wish to kn
whether these changes represent a large or a small devi
from the Lorenz-model dynamics.

This topological analysis will be performed on seve
time series representing the field amplitude, accurately
culated from the DOPL model. They will correspond to d
ferent operating conditions, in particular, to different valu
of the cavity losses, in order to be able to investigate
differences with respect to the Lorenz model just pointed
above.

As indicated, the objective of a topological analysis is
determine the mechanism that is responsible for genera
the chaotic time series. A chaotic time series is generated
two competing processes. On the one hand, most initial c
ditions diverge from each other. This phenomenon is usu
called ‘‘sensitive dependence on initial conditions,’’ and
caused by the stretching of phase space in some direc
2479 © 1997 The American Physical Society
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2480 55R. GILMORE et al.
On the other hand, if the motion is constrained to a boun
region in phase space, two initially nearby points cannot c
tinue to separate from each other indefinitely. There mus
some mechanism that takes distant regions in phase s
and ‘‘squeezes’’ them together. The objective of topologi
analysis is to determine the stretching and squeezing me
nisms that operate in the appropriate phase space@12,13#.

This analysis is facilitated by an observation due to B
man and Williams@14#. Their theorem states that a stran
attractor inR3 can be compressed along the stable direct
without altering the topological organization of the unsta
periodic orbits in the flow. After compression, the stran
attractor and all the periodic orbits in it exist on a branch
two-dimensional manifold. This branched manifold provid
a caricature for the strange attractor. Moreover, the topol
cal organization of all periodic orbits in the strange attrac
is completely defined by this branched manifold. The obj
tive of a topological analysis of chaotic data is the deter
nation of the branched manifold~or template! which charac-
terizes the attractor@15#.

A branched manifold provides an important starting po
for the description of physical systems that behave cha
cally. As experimental parameters, or model control para
eters, are varied, it is useful to regard the phase-space flo
being restricted to different parts of the branched manifo
This smooth variation of the restriction then accounts for
bifurcations that occur as parameters are changed. For
parameter values, the spectrum of periodic orbits that ex
in a chaotic flow, up to any period, can be specified by
‘‘basis of unstable periodic orbits’’@22#. This basis provides
an estimate of the system’s topological entropy.

The analysis procedure has been reduced to a serie
simple steps@12,13#. These are as follows.~i! Embed the
data.~ii ! Extract the unstable ‘‘periodic orbits.’’~iii ! Com-
pute the topological invariants~linking numbers!. ~iv! Iden-
tify the branched manifold.~v! Verify this identification.
This topological analysis procedure has successfully b
applied to a number of experimental data sets@12,16–20#.

We now carry out a topological analysis on three spec
DOPL data sets, which will be denotedA, B, andC and
correspond to the operation conditions also denoted aA,
B, andC in Ref. @6#. In caseB the cavity losses take a
optimum value, namely,s51.85 ~value normalized to the
transverse relaxation rate of the molecular amplifying m
dium!, for which there is a maximum coincidence, with r
spect to metric properties, with the Lorenz-model pred
tions. In casesA and C, the cavity losses are smalle
(s51.15) and larger (s57), respectively, so that the pos
sible subtle differences with respect to the Lorenz mo
pointed out above show up. In the three data sets the vari
recorded is the real~positive or negative! amplitude of the
laser field@x(t)#. We first carry out the analysis of data s
B, which is described in detail in Secs. II–VII. After com
pleting this task, we describe more briefly the results of
analysis of data setsA andC ~Sec. VIII!. Finally, in Sec. IX
the main conclusions are summarized. As described in d
below, the results of these analyses show that the equa
generate a flow topologically equivalent to the flow gen
ated by the Lorenz equations. A definite difference betw
caseB and casesA andC is identified, but it does not affec
the topology of the chaotic attractor.
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As a complementary detail, we show in AppendixA how
field-amplitude time series@x(t)# could be obtained from
field-intensity time series@ I (t);x2(t)#. This is made be-
cause from the experimental point of view field-intens
measurements are much easier to perform than fi
amplitude measurements@4#.

II. VISUAL INSPECTION OF THE DATA

Even before a topological analysis is begun, useful inf
mation can be gleaned by visual inspection of the cha
time series. A portion of the time series from data setB,
which corresponds to the real laser field amplitudex(t), is
shown in Fig. 1. This variable can take positive and nega
values, since the laser is assumed to operate on reson
between the molecular transition and cavity frequencies.

There appear to be two fixed points at6x0 about which
unstable oscillations take place. The observablex(t) oscil-
lates around one of these fixed points with exponentia
increasing amplitude until it crosses the thresholdx50.
Then oscillations begin about the other unstable fixed po
The larger the value ofux(t)u just before the threshold is
crossed, the closer the next series of exponentially grow
oscillations begins around the other fixed point. We sho
observe here that the Lorenz system behaves in exactly
way. In fact, we will show below that the behavior of th
system is essentially identical to the behavior of the Lore
system. That is, this data set, appropriately embedded, ca
smoothly deformed into the Lorenz attractor.

III. EMBEDDING

There are many ways to create ann-dimensional embed-
ding from scalar time series datax( i ), i51,2, . . . ,T of
lengthT. The default is the delay embedding method,

x~ i !→yd~ i !5„x~ i !,x~ i2t!, . . . ,x@ i2~d21!t#…, ~1!

whose principle virtues are that it is valid for anyd, and all
components of the embedded vectorsyj

d( i ) have the same
signal-to-noise ratio.

FIG. 1. Time series for a portion of data setB ~real laser field
amplitude vs time!. The time separation between consecutive pea
in absolute units, is of the order of a few microseconds.
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55 2481TOPOLOGICAL ANALYSIS OF CHAOS IN THE . . .
In this work we use embeddings that depend on der
tives @12,13#. Such embeddings are useful because they
dress questions of dynamics. They are also useful becau
is a simple matter to determine linking numbers of perio
orbits simply by inspection. One serious drawback is t
differentiation decreases the signal-to-noise ratio. For
data sets at hand this does not pose a problem.

In Fig. 2 we plot the projection of the strange attrac
x(t)→„x(t),y(t),z(t)… onto thex-y plane. In this embedding
y(t)5dx(t)/dt. Since all crossings are transverse, the e
bedding is sufficient to guarantee that the uniqueness t
rem of ordinary differential equations is satisfied provid
we take minimal care with the definition of the coordina
z(t).

One convenient choice forz(t) is dy(t)/dt. With such an
embedding the linking numbers of periodic orbits can
computed very easily. We illustrate this in Fig. 3~a!. At the
intersection of two orbit segments, the slope (S) of either
segment is

S5
dy

dx
5
dy/dt

dx/dt
5
z

y
,

z5yS ~2!

Therefore, in the half planey.0, the larger the slope, th
larger thez coordinate. The reverse is true in the half pla
y,0. In the projection of two periodic orbits onto thex-y
plane, each crossing is assigned an integer value:61. The
sign is determined as follows. Rotate the tangent vecto
the upper segment into the tangent vector to the lower s
ment through the smallest possible angle. If this is done
ing a left-hand rule, the sign is21. With the right hand rule,
the sign is11. The linking number of two periodic orbits i
then half the sum over all signed crossings.

The embedding represented by (x,y,z)5(x,dx/dt,
d2x/dt2) presents two difficulties. Crossings in the upp
half plane are negative while those in the lower half pla
are positive. Therefore, the linking numbers of two perio
orbits is half the difference between the number of crossi
in the lower half plane and the number of crossings in
upper half plane. Inspection of the standard representatio

FIG. 2. Projection of the strange attractor„x(t),y(t),z(t)… asso-
ciated with data setB onto the x-y plane. The coordinatey is
defined as the derivative ofx: y5dx/dt.
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the Lorenz attractor in Fig. 4~a! shows that all crossings are
positive. The second difficulty is that the Lorenz system has
a rotation symmetry. It is invariant under rotation through
p radians about thez axis:Rz(p) (x,y,z)5(2x,2y,1z). It
is not clear from inspection of Fig. 2 that the strange attracto
that we are analyzing has any symmetry at all. If it is in fact
symmetric, it may exhibit lack of symmetry by accident of
initial conditions or by the finite length of the data set plot-
ted. @In Sec. VII we show convincingly that it is symmetric
under (x,y)→(2x,2y)#. However, if there is a symmetry
under (x,y)→(2x,2y), it is an inversion symmetry under
the embedding~2!:

P~x,y,z!→~2x,2y,2z! ~3!

because of the way in whichz5dy/dt is defined.
If we wish to show equivalence between the data set un

der study and the Lorenz system, we must choose a differe
embedding. Such an embedding should possess the sam
symmetry as the Lorenz attractor@e.g.,Rz(p)# and should
generate only positive crossings. Such an embedding is

FIG. 3. Determination of linking numbers by visual inspection
of the embedding.~a! For the embeddingz5dy/dt all crossings in
the upper half planey.0 are negative, by the left-hand rule. All
crossing in the lower half plane are positive.~b! For the embedding
with z52y(dy/dt) all crossings in the first and third quadrants,
where the only crossings occur, are positive.

FIG. 4. ~a! Schematic representation of the Lorenz attractor. All
crossings are positive.~b! Schematic representation of the attractor
constructed from data setB using the embedding~4!. ~c! When the
attractor shown in~b! is deformed by rotating the right-hand lobe
throughp radians, top into the page, it is easily recognizable as
topologically equivalent to the Lorenz attractor.
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2482 55R. GILMORE et al.
ẋ5y,

yẏ52z, ~4!

ż5 f ~x,y,z!.

The crossing convention is shown in Fig. 3~b!. By the pre-
vious argument, at a crossing

z5~2y2!S, ~5!

whereS is againdy/dx. For yÞ0, the larger the slope, th
more negative the coordinatez. As a result, all crossings ar
positive. In addition, if the strange attractor exhibits a sy
metry, it is of the correct type:

Rz~p!~x,y,z!→~2x,2y,1z!. ~6!

For this embedding, determining the dynamics become
problem of determining the single functionf (x,y,z).

IV. PRELIMINARY IDENTIFICATION
OF BRANCHED MANIFOLDS

Before proceeding with the topological analysis, w
present a simple argument to show that the strange attra
generated by data setB, using the embedding~4!, should be
equivalent to the Lorenz attractor. In Fig. 4~b! we provide a
schematic representation of the strange attractor. The
from the left lobe to the right lobe in the upper half pla
(y.0) exhibits a half twist with a clockwise rotation in th
direction of the flow. This branch of the flow is joined to th
circular flow in the right-hand lobe from the top. The same
true, byRz(p) symmetry, for the flow from the right-han
lobe to the left-hand lobe in the lower half plane. If th
right-hand lobe is given a rotation byp radians about the
positivex axis, with the top into (̂ ) the x-y plane and the
bottom out ((), as shown, then Fig. 4~c! is a caricature of
the flow. This is easily seen to be equivalent to the Lore
flow, shown in Fig. 4~a!.

V. PERIODIC ORBITS

The next step in the topological analysis involves extr
tion of unstable periodic orbits from the chaotic time ser
data. Unstable periodic orbits exist in abundance in a stra
attractor. In fact, they are dense in a hyperbolic strange
tractor.

When the point representing the state of a system f
into the neighborhood of an unstable periodic orbit of su
ciently low period, it may evolve in the neighborhood of th
orbit until it returns to the neighborhood of its starting poin
It then evolves along a path in phase space very close t
earlier part of its trajectory. This recursion of evolution
phase space provides a tool by means of which segmen
the trajectory that shadow unstable periodic orbits may
recognized@12,13,17#.

There are in fact no segments of the time series data
areunstable periodic orbits. However, many segments of
data track unstable periodic orbits sufficiently closely
sufficiently long that they can be recognized and then use
surrogates for these orbits. These segments of the ch
-
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time series can be identified by the method of close retu
We have used this method to locate many unstable peri
orbits in data setB. To period six, we have identified th
following 15 orbits, named by their symbolic dynamic
LR; L2R, LR2; L3R, LR3, L2R2; L4R, LR4, L3R2,
LRLR2; L5R, LR5, L4R2, L2R4, LRLR3. In addition, the
fixed points at (6x0,0,0) are effectively the period-one un
stable periodic orbitsL,R.

Several of these orbits are shown in Fig. 5. None of th
orbits actually closes. However, to the resolution show
they all appear closed.

VI. IDENTIFICATION OF THE TEMPLATE

The template, or branched manifold, that characterize
strange attractor can be described in an invariant way b
topological index. This is simply a set of integers. The
integers are determined from the period-one and period-
orbits (L,R,LR). The properties of these orbits determine
232 template matrix and a 132 reconnection array. The
template matrix consists of the self-linking and linking num
bers of the period-one orbits. Since these orbits are po
they do not link and their self-linking numbers are zero. T
template matrix is

F0 0

0 0G ,
@1121#. ~7!

FIG. 5. A selection of unstable periodic orbits extracted fro
data setB by the method of close returns.
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TABLE I. Linking numbers for all orbits up to period six extracted from data setB by the method of close
returns. All linking numbers were computed from the data and from the Lorenz template. The self-li
numbers~on diagonal! were computed from the Lorenz template but not from the data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LR 1 1 1 1 1 2 1 1 2 2 1 1 2 2 2
L2R 1 2 1 2 1 2 2 1 3 2 2 1 3 2 2
LR2 1 1 2 1 2 2 1 2 2 3 1 2 2 3 4
L3R 1 2 1 3 1 2 3 1 3 2 3 1 4 2 2
LR3 1 1 2 1 3 2 1 3 2 3 1 3 2 4 4
L2R2 2 2 2 2 2 3 2 2 3 4 2 2 3 3 4
L4R 1 2 1 3 1 2 4 1 3 2 4 1 4 2 2
LR4 1 1 2 1 3 2 1 4 2 3 1 4 2 4 4
L3R2 2 3 2 3 2 3 3 2 4 4 3 2 4 3 4
LRLR2 2 2 3 2 3 4 2 3 4 6 2 3 4 5 6
L5R 1 2 1 3 1 2 4 1 3 2 5 1 4 2 2
LR5 1 1 2 1 3 2 1 4 2 3 1 5 2 4 4
L4R2 2 3 2 4 2 3 4 2 4 4 4 2 5 3 4
L2R4 2 2 3 2 4 3 2 4 3 5 2 4 3 5 6
LRLR3 2 2 4 2 4 4 2 4 4 6 2 4 4 6 7
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The reconnection array determines whether the branche
connected from above or below, in the projection used. T
larger the integer, the further behind the branch is when
connection occurs. Since the right-hand branch joins the
hand branch from the top@Fig. 4~c!#, the array is
@11,21#. The topological characterization of the Loren
template is given by Eq.~7! @12,13,15#.

In order to verify this identification, we have compute
the linking numbers for all pairs of unstable periodic orb
(p<6) extracted from the chaotic time series. This was e
ily done by superposing the orbits and counting the to
number of crossings. This even number is twice the link
number of the orbit pair@21#. The results are presented
Table I. These linking numbers were also computed for
corresponding orbits in the Lorenz template. The linki
numbers computed from the data, and calculated for the
renz template, were identical.

VII. SYMMETRY

We now return to the question of whether the stran
attractor possesses a symmetry. Figure 2 presents a pr
tion of a segment of the time series data onto thex-y plane.
This projection does not convincingly suggest the prese
of symmetry under (x,y)→(2x,2y). This may be becaus
there is in fact no symmetry. Or it may be because we h
not plotted a sufficiently long segment of chaotic data.

To unambiguously resolve this question, it is sufficient
compare the unstable periodic orbits extracted from the d
Under rotation symmetry

Rz~p!: L→R, R→L ~8!

Thus, the rotated image ofL2R will be indistinguishable
from R2L if the attractor isRz(p) symmetric. If the attractor
lacks rotational symmetry, these orbits will be distinguis
able.
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We have compared all unstable periodic orbits extrac
from the data that should be related by symmetry. Th
include

LR↔RL ~self!,

L2R↔R2L,

L3R↔R3L,

L2R2↔R2L2 ~self!, ~9!

L4R↔R4L,

L5R↔R5L,

L4R2↔R4L2.

In every case, the rotated image of one orbit was identica
its counterpart@see, for instance, Figs. 5~c! and 5~d!#. In two
cases (LR,L2R2) the rotated image was identical to th
original. We therefore feel safe in concluding that the stran
attractor generated by data setB, with embedding~4!, exhib-
its the topological structure of the Lorenz attractor and
invariant underRz(p)(x,y,z)→(2x,2y,1z).

VIII. DATA SETS A AND C

An identical analysis has been carried out on data seA.
We will not review the entire analysis. Rather, we will poi
out where slight differences exist.

Data setA corresponds to a small value of the cavi
losses (s51.15), for which the ‘‘bad cavity’’ condition
s,b11 is no longer verified (b50.28 for the NH3 laser!.
This implies that the steady state remains stable for
pumping strength~the subcritical Hopf bifurcation affecting
it at a finite value of the pump strength in case B has n
shifted toward an infinite value of the pumping strengt!.
The chaotic dynamics can nevertheless be obtained by h
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2484 55R. GILMORE et al.
mode excitation~i.e., by a finite-amplitude perturbation of
the steady state!.

Visual inspection of data setA ~Fig. 6! reveals two ways
in which it differs from data setB. First, there do not appear
to be fixed points in the data set. Rather, the smallest os
lations appear to be unstable period-one limit cycles in t
left (x,0) and right (x.0) lobes. We might therefore ex-
pect to be able to extract real period one orbits (L,R) from
the data by the method of close returns~cf. Fig. 8 below!.
Second, on transition through the thresholdx50, monoto-
nicity is lost. That is, it is no longer true that the larger th
amplitude uxu just before transition fromx,0 to x.0 ~or
vice versa!, the smaller the amplitude of oscillation around
the new limit cycle. A few such instances are indicated b
arrows in Fig. 6. In fact, the morex overshoots on the tran-
sition, the smaller the amplitude on the next oscillation, an
the nearer it gets to the unstable limit cycle. These facts~in
particular, the fact that the first peak in each growing spir
sequence can be slightly larger than the next peak! are re-
lated to the appearance of a double-peaked cusp in the pe
intensity return map@7,8#.

In Fig. 7~a! we present a projection of the strange attract
onto thex-y plane, where as beforey5dx/dt. This sche-
matic representation indicates the extra twist introduced in
the flow by the nonmonotonicity. In Fig. 7~b! we show the
limit cycle, its stable manifold~vertical!, and unstable mani-
fold ~horizontal annulus!. When a point overshoots, it ap-
proaches the limit cycle along the stable manifold and th
spirals away from it along the unstable manifold. A poin
that does not overshoot settles into the unstable manifold,
not as close to the limit cycle, and then spirals away. Th
nonmonotonicity in the data is due entirely to the outwar
leaning structure of the unstable manifold. If this is deforme
to lean inward, the nonmonotonicity disappears. Crossings
the projection to thex-y plane are pushed from the secon
and fourth quadrants into the third and first quadrants wit
out changing their sign. The topological organization of a
unstable periodic orbits remains unchanged. The dynamics
clearly Lorenz-like. The only difference is that the unstab
fixed points are replaced by unstable periodic orbits of peri
1. The sequence of deformations shown in Fig. 4, whic
takes the strange attractor for data setB into the Lorenz

FIG. 6. Time series for a portion of data setA. Arrows indicate
where monotonicity is lost.
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attractor, can then be applied to data setA.
We have extracted unstable periodic orbits from data

A by the method of close returns. To period 6, the 19 u
stable periodic orbits we have extracted are:L, R; LR;
L2R, LR2; L3R, LR3, L2R2; L4R, LR4, L2RLR, R2LRL,
L3R2, L2R3; L5R, LR5, L3RLR, R3LRL, L2R2LR. Several
of these orbits are shown in Fig. 8. We could not find t
orbitsL4R2 andR4L2 to the precision used to find the othe
orbits. The linking numbers for all orbit pairs were com
puted, and all agreed with the linking numbers for cor
sponding orbits for the standard Lorenz template.

To determine whether the strange attractor for data
A is symmetric, we compared mirror image orbit pairs. T
such comparisons were made on the 19 unstable peri
orbits extracted from data setA. In each case, the rotate
image of one orbit was indistinguishable from the mirr
image orbit@see, for instance, Figs. 8~c! and 8~d!#.

We therefore conclude that the strange attractor gener
by data setA with the embedding~4! exhibits the topological
structure of the Lorenz attractor. It is also invariant und
Rz(p)(x,y,z)→(2x,2y,1z). The two strange attractors
from data setsB andA, can be deformed into each other. Th
deformation is smooth except for the Hopf bifurcatio
which separates one from the other. This bifurcation repla
the unstable fixed points, which are present in data setB with
the unstable period-one limit cycles, which appear in data
A.

At variance with data setA, data setC corresponds to
large cavity losses (s57), for which the system is well in-
side the ‘‘bad cavity’’ limit. In these conditions, we hav
found that the subcritical Hopf bifurcation affecting th

FIG. 7. Projection of the strange attractor„x(t),y(t),z(t)… asso-
ciated with data setA onto the x-y plane. The coordinatey is
defined as the derivative ofx: y5dx/dt. This projection shows an
extra twist not observed in Fig. 2. This twist can be unwou
smoothly without disorganizing any of the unstable periodic orb
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steady state in the case of data setB or in the Lorenz model
now becomes supercritical, as shown in Fig. 9. A stable li
cycle appears in phase space, which by further increa
pumping strength soon becomes unstable and chao
reached. Figure 10 shows the phase-space plot ofdx/dt ver-
susx(t) for data setC. These phase-space plots are ess
tially indistinguishable from the phase-space plots c
structed from data setA. The two phase-space plots a
topologically identical. We have extracted 16 unstable p
odic orbits from the field amplitudes recovered from data
C: L, R; LR; L2R, R2L; L2R2, L3R, R3L; L4R, R4L,
L2RLR, R2LRL, L3R2; L5R, R2L2RL, R3LRL. The attrac-
tor obtained from data setC is symmetric by the usual test
on symmetry related orbits.

Data setsB, A, and C represent laser field amplitude
x(t), which can take positive and negative values. Howev
experimentally it is much easier to obtain laser field inten
ties I (t);x2(t) @4#. In the Appendix we show how a field
amplitude time series could be extracted from a recor
field intensity time series, when necessary@a topological
analysis to recover the underlying dynamics cannot be
ried out directly onx2(t) data#.

IX. CONCLUSIONS

We have carried out a topological analysis on several d
sets generated by the Doppler broadened optically pum
laser model, which involves six parameters and up to sev
hundred first-order differential equations. For each data
the dynamics is reducible to that of a three-dimensional

FIG. 8. A selection of unstable periodic orbits extracted fro
data setA by the method of close returns.
it
ng
is

n-
-

i-
t

r,
i-

d

r-

ta
ed
al
et
-

namical system. With appropriate phase-space embed
the dynamics is seen to be topologically equivalent to tha
the Lorenz system.

In each case the analysis involved several steps.~i! Em-
bed the data.~ii ! Extract the unstable periodic orbits.~iii !
Compute the topological invariants~linking numbers!. ~iv!
Identify the branched manifold.~v! Verify this identification.

Many embeddings are possible. To show the similar
with the Lorenz system we used the differential phase-sp
embedding~4!, which respects the rotation symmetry und
Rz(p) ~3! of the Lorenz system. The unstable periodic orb
were extracted by the method of close returns. For each
the data sets analyzed we were able to extract more th
dozen unstable periodic orbits. The topological invaria
~linking numbers! were computed simply by ‘‘counting

FIG. 9. Maximum amplitude of the laser field (amax) as a func-
tion of the pump field amplitudeb. For b,0.7293 the laser field
emission is stable. Atb50.7293 a supercritical Hopf bifurcation
occurs, so that forb.0.7293 the emission is modulated in tim
2a and 2b represent the Rabi frequencies of the laser and pu
fields, respectively, in units of the molecular transverse relaxa
rate.

FIG. 10. Phase-space plotdx/dt vs x(t). This phase-space plo
is topologically equivalent to that constructed from the amplitu
data in data setA.
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crossings.’’ An underlying template was then identified u
ing a subset of the orbits extracted. In each case, the un
lying template was that of the classical Lorenz attractor. T
is defined algebraically by a set of integers~7!. This alge-
braic characterization was then used to predict the link
numbers of all other unstable periodic orbits extracted fr
the data. In this way we were able to validate our origin
template identification.

The topological analysis procedure was applied directly
data setsB, A, andC, which measured the field amplitude

Data setB exhibits two fixed points in the phase-spa
projection (ẋ versus x) at (x,ẋ)5(6x0,0). These fixed
points are weakly unstable foci. They are separated b
saddle at the origin. Data setA differs from data setB by a
pair of symmetry related Hopf bifurcations. The fixed poin
at (6x0,0) are inaccessible: they are surrounded by unsta
limit cycles, as can be seen in Fig. 7. Data setC has been
shown to be topologically identical to data setA, with the
Hopf bifurcation being supercritical instead of subcritical.

Thus, we finally conclude that the embedded data sets

FIG. 11. ~a! Intensity I (t) vs time t for part of data setC. The
time separation between consecutive peaks, in absolute units,
the order of a few microseconds.~b! Morphology of the minima of
I (t)1/2 vs t for the intensity data shown in~a!. ~c! Phase-space plo
dI/dt vs I (t) for this time series.
-
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re

topologically equivalent to the Lorenz attractor. This defi
nitely confirms the predictions of previous metric analyse
in the sense that an optically pumped far-infrared gas la
behaves, in spite of its larger complexity, as the Loren
model. This occurs especially for a certain domain of param
eter values~that associated to data setB). Decreasing~data
setA) or increasing~data setC) laser cavity losses intro-
duces some small definite changes in the phase-space s
ture ~trajectories approach a limit cycle instead of a fixe
point; supercritical Hopf bifurcation in caseC). The first of
these changes could also be found in the Lorenz model
scanning its three parametersr , s, andb ~although the sen-
sitivity to these parameter variations is not the same in bo
models!, but the second change probably could not be fou
~the Lorenz equations do not provide a complete unfoldin
of the most general dynamics that could appear in a pha
space with two saddle foci separated by an unstable regu
saddle!. However, from the point of view of the branched
manifold associated to the chaotic attractor, this does n
represent any topological difference.
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APPENDIX

To show how a field amplitude time series could be e
tracted from a recorded field intensity time series, we ha
recalculated data setC recording only the field intensity@Fig.
11~a!#. From it, the field amplitude time series has been r
obtained in the following way.

First, dI(t)/dt is plotted versusI (t) @Fig. 11~c!#. The al-
most degenerate set of crossings near the origin can be
panded by a logarithmic transformation. In fact,d(logI)/dt
versus logI has the appearance of a Ro¨ssler attractor.

In order to recover amplitudes from intensity data, w
must take the square root of the data, paying careful attent
to sign changes. It is clear that the amplitude can underg
sign change only at an intensity minimum. However, on
some intensity minima are caused by an amplitude ze

of

FIG. 12. Field-amplitude datax(t) vs t ~top! recovered from the
intensity data~bottom! of data setC using the algorithm described
in the text.
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crossing. To separate the two, it is useful to plotAI (t) versus
t @Fig. 11~b!#. If I 0 represents a local intensity minimum
then intensities near that minimum can be represented
I (t)5@ I (t)2I 0#1I 0 5 I 01DI (t). Since x2(t)5I (t), we
have

ux~ t !u5AI 01DI ~ t !5HAI 01~1/2AI 0!DI ~ t ! for I 0Þ0

ADI ~ t ! for I 050.
~A1!

In the first case,ux(t)u5AI (t) has a parabolic minimum. In
the second case, which involves a zero crossing of the
plitude, ux(t)u approaches and departs linearly from thex
axis. This morphology can be used to locate zero cross
of the field amplitude.

Recovery of the field amplitude from the intensity w
implemented using a slightly more sophisticated proced
First, an integerl (561) was defined. This integer dete
mines which of the two square rootsx(t)
56AI (t)5 lAI (t) should be taken. Then the time deriv
tives in two successive time intervals~with and without sign
changes! were compared according to
.

.

i-

m

as

-

gs

e.

x35 lAI i11,

S15u~1x32x2!2~x22x1!u, ~A2!

S25u~2x32x2!2~x22x1!u.

After each comparison we cycle the variables according
x2→x1, x3→x2, and continue. NormallyS1,S2 and the
amplitude does not undergo a sign change. Whenever
amplitude does undergo a sign change,S1.S2. Under this
condition, we make the replacementsx3→2x3, l→2 l , and
continue. This algorithm very effectively determines the a
plitude zero crossings. In Fig. 12 we plotx(t), recovered
from I (t) using this algorithm, versust. We have verified
that this result forx(t) coincides with the one that is directl
obtained from direct numerical resolution of the laser eq
tions, with almost no discrepancy along the time series~in
the case of experimental data sets, the presence of n
could probably introduce some alterations in the sign of
fields at some instants of time!.
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